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A B S T R A C T   

The environmental impact of data centers has become a major concern. In their Q1 2021 report, Intel estimated 
that there are around 100 million servers deployed globally. In this paper we provide an overview of Interact, a 
machine learning tool that helps data center operators easily analyze, manage, and optimize the energy, cost, and 
Carbon footprint of their current servers and infrastructure. We discuss in detail the machine learning algorithms 
and the energy models used. We also demonstrate the key features of the tool and how it can help data centers 
become more sustainable by reducing server inefficiencies.   

1. Motivation 

The environmental impact of data centers is becoming a rising 
concern in Europe and worldwide. The European Data Center sector has 
made advances towards increased sustainability in a number of ways. As 
an example, agreements on best practice include the Climate Neutral 
Data Pact, a consortium of data center operators and trade associations 
leveraging technology and digitalization to achieve the goal of making 
Europe climate neutral by 2050, released information on best practice to 
support the EU Green Deal. This covers a commitment to energy effi-
ciency, 100 % carbon free energy, water conservation, the reuse and 
repair of servers and heat recycling as the five pillars of the pact [1]. 

The 2021 announcement builds upon a set of best practice guide-
lines, first published in the European Commission JRC Technical Reports 
in 2018. The document, entitled “2018 Best Practice Guidelines for the 
EU Code of Conduct on Data Center Energy Efficiency” has detailed 
guidelines on energy efficiency and other metrics. 

The EU has also published several policies and directives on circular 
economy and practical steps taken to facilitate repair and reuse. The 
Ecodesign Directive [2], which came into effect in all European member 
states in March 2020 has a specific section (Lot 9) on servers. The 
legislation energy efficiency criteria for new servers as well as legislation 
such as the public provision of firmware be available for servers from 2 
to 8 years after the release date, which supports repair, resale and 
remanufacture. 

In addition, the EU Circular Economy Action Plan includes specific 
ambitions relating to electronic goods and ICT, including targets to 

extend product lifetimes [3]. While in the past, data center professionals 
would have been concerned about this due to the huge efficiency gains 
with every successive generation of servers, recent evidence suggests 
that the slowdown in Moore’s Law means that product lifetimes can be 
extended without a negative effect on energy efficiency. This will be 
discussed in detail below. 

The UK published a Circular Economy Package policy statement in 
July 2020 [4], which identified steps for the reduction of waste and 
establishing an ambitious and credible long-term path for waste man-
agement and recycling. 

This was followed in September by the more sector relevant 
Greening government: ICT and digital services strategy 2020–2025, 
which included commitments towards zero to landfill on electronic 
waste and a percentage increase in refurbished or remanufactured goods 
in the public sector IT estate [5]. The UK Government has also made a 
commitment towards Right to Repair legislation for consumer goods [6]. 
If adopted, this paves the way for business related legislation more in 
line with the EU Ecodesign Directive. 

In reality, some Hyperscale data centers are making remarkable 
commitments to sustainable objectives. Google, for example, pledged to 
operate on Carbon-free energy [7] in all regions by 2030. Microsoft has 
also committed to achieving 100 % renewable energy by 2025 [8]. 
Hyperscalers are also noticeably minimizing the inefficiencies in their 
power and cooling facilities. Today, Google’s average PUE is 1.11 across 
all their large-scale data centers. 

However, despite clean energy and KPIs targeting inefficiencies in 
the data center’s infrastructure being widely adopted by the industry 
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[9], measures targeting other areas, such as inefficiencies in servers, 
circular economy, and heat reuse, are still lagging. 

Targeting inefficiencies particularly in servers is crucial to improve 
the overall data center’s energy efficiency, especially since servers are 
the main energy consumers in data centers. This is currently being 
partially targeted by powering off idle servers and consolidation to in-
crease server’s utilization rate. However, there are additional ways to 
reduce server inefficiencies, such as using energy efficient servers that 
execute high operations per Watt, as well as optimizing the Software 
that these servers are running. 

In our previous research [10], we presented the energy and 
cost-saving opportunities available through upgrading server compo-
nents and refreshing servers to newer models (servers that are one 
generation younger than the latest model). In the next phase of work, we 
took these observations one step ahead with the creation of an IT 
Infrastructure Energy and Cost Analyser tool (Interact), which auto-
matically generates the energy and cost analysis for any data center 
depending on their existing IT infrastructure. 

In this paper, we explain how Interact works. We also demonstrate 
how it can help data centers target their servers’ inefficiencies and 
optimize their server refresh cycles in terms of energy, cost, and carbon 
footprint. 

The mathematical algorithms used to model the server’s energy ef-
ficiency, followed by the equations used for the comparative analysis are 
discussed in Section 2. In Section 3, we go over the main features of the 
tool and in Section 4, we present three use cases to demonstrate how 
Interact can be utilized in real-life scenarios. Finally, the conclusion and 
future improvements are discussed in Section 5. 

2. Development of data center server energy evaluation tool: 
interact 

Interact offers a unique tool that is primarily focused on the energy 
efficiency of servers based on their hardware configuration. It is a 
continuation of our previous research [10] that evaluated the impact of 
hardware components and server refresh in terms of energy consump-
tion, carbon footprint, and cost. 

Interact is based on machine learning to accurately estimate the 
server’s power and performance values based on a specific hardware 
configuration. In the following subsections, the training dataset is pre-
sented, model features are explained in detail, different regression 
models are evaluated, and the best model is presented and validated 
against real-life benchmarking experiments. 

2.1. Modeling energy efficiency of servers 

The main purpose of the machine learning model is to accurately 
estimate the power and performance values of a specific server config-
uration. These values are then used to calculate the server’s annual 
energy consumption and cost estimations. 

2.1.1. Dataset 
The published server results of the SPECpower_ssj2008 benchmark 

[11] were used as a starting point for our dataset. The SPEC Power 
benchmark evaluates the power and performance characteristics of 
single and multi-node servers and is used as a toolset to improve server 
efficiency. Though released in 2007, SPECpower_ssj2008 is still one of 
the most widely used energy efficiency benchmark amongst hardware 
vendors and computer manufacturers. Table 1 shows a snippet of the 
dataset. 

2.1.2. Data exploration and cleansing 
The original data set extracted from SPEC as of 16/02/2021, con-

tained 737 records. The first step of data cleansing consisted of removing 
non-compliant results (i.e. where Result = 0), which left us with 697 
records. Ta
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The second step was converting multi-node results to single-node 
results. For that purpose, the following fields were divided by the 
number of nodes:  

• Power at active idle  
• Power at 100 % utilization load  
• Number of chips  
• Memory capacity 

Then, missing values for the form factor were manually filled in. If 
the form factor is unknown, the record was removed. 

Moreover, there are a few outlier records spotted but only one 
obvious outlier, which had a performance/power at 100 % load value of 
2, was removed. 

Since hardware vendor and form factor columns contain text values, 
these were converted to the numerical format using the one-hot 
encoding technique. 

The resulting cleaned dataset contained 688 records, summarized in 
the Table 2. 

2.1.3. Feature selection 
To balance out feature importance whilst maintaining practicality, 

we decided to exclude power supply details, disk drive details, and 
number of DIMMs since this information is not widely available among 
data centers and collecting it would add unnecessary complexity for the 
users. Table 3 summarizes the final selected features from the user input. 

2.1.4. Models evaluation 
In this section, we describe the sampling strategy used to split the 

data between training and testing sets, the different machine learning 
models used for assessment, and the error metric results for each model.  

a Sampling strategy 

Since we are dealing with a relatively small dataset (~700 records), 
we carried out a repeated k-fold cross-validation [12], with 10 folds and 
3 repeats to split the data between training and testing sets. Doing so 
ensures the model is trained and assessed across all records, of different 
samples and variances. The final evaluation error metric is calculated by 
taking the average error values of each run.  

b Machine learning models 

The data is assessed using these 4 common models that are generally 
used to solve regression problems.  

• Random Forest (RF): Random forest is an ensemble of decision tree 
algorithms. Several decision trees are created where each tree is 
created from a different bootstrap sample of the training dataset. A 
prediction on a regression problem is the average of the prediction 
across the trees in the ensemble [13]. For evaluation purposes, we 
used the random forest regressor provided by the Scikit-learn python 
library, with the default hyperparameters [14].  

• Gradient Boosting (GB): Gradient boosting is also an ensemble of 
decision tree models. Trees are added one at a time to the ensemble 
and fit to correct the prediction errors made by prior models. Models 
are fit using any arbitrary differentiable loss function and gradient 
descent optimization algorithm, like a neural network [15]. For 
evaluation purposes, we used the gradient boosting regressor pro-
vided by the Scikit-learn python library, with the default hyper-
parameters [16].  

• K-Nearest Neighbors (KNN): The principle behind this algorithm is to 
use the most similar historical examples on new data. When a pre-
diction is required, the k-most similar records to a new record from 
the training dataset are then located. The similarity between records 
can be measured in several ways, including the Euclidean distance. 
Once the neighbors are discovered, the summary prediction can be 
made by returning the average [17]. For evaluation purposes, we 
used the k-nearest Neighbors regressor provided by the Scikit-learn 
python library, with the default hyperparameters [18].  

• Artificial Neural Network (ANN): An ANN is based on a collection of 
connected nodes called artificial neurons, transmitting signals to 
each other. The signal at a connection is a number, and the output of 
each neuron is computed by some non-linear function of the sum of 
its inputs. Neurons and connections typically have a weight that 
adjusts as learning proceeds. Neurons are aggregated into layers and 
signals travel from the first layer (the input layer) to the last layer 
(the output layer), while traversing through hidden layers. Different 
layers may perform different transformations on their inputs. For 
evaluation purposes, we used the Keras Deep Learning python library 

Table 2 
Statistical summary of the cleaned dataset.  

Category 
Statistical summary of the cleaned data set (total data set size m = 688)  

Minimum Maximum Mean Range Median Standard deviation  

Input features 
CPU Number of chips 1 8 2.2 7 2 1.1  

Cores per chip 1 64 15.2 63 8 15  
Threads per core 1 4 1.8 3 2 0.4  
Processor speed (MHz) 1600 3800 2532.2 2200 2500 369.1 

RAM 
Memory capacity (GB) 4 1536 93.7 1532 24 142.7 
Number of DIMMs 2 48 8.9 46 6 6.9 

Power supply 
Power supplies installed 0 6 0.9 6 1 0.6 
Power supply rating (watts) 0 3000 582.4 3000 560 426.5 

Server Server release year 2004 2020 2013.2 16 2012 4.1 

Storage Number of disk drives 1 4 1 3 1 0.3 
Capacity of disk drives (GB) 14 1920 209.9 1906 160 197.6  
Output label 
Power at active idle (watts) 9.3 993 91.5 983.7 68.3 83 
Power at 100 % utilisation load (watts) 44.7 2148 344 2103.3 264.5 249.8 
Performance/power at 100 % utilisation load (ssj_ops/watt) 68.1 32,361 7569.4 32292.9 5297 6454.1  

Table 3 
Summary of selected features for the model.  

User Input Extracted features 

Server model 
Hardware vendor 
Release year 
Form factor 

CPU model 
Cores per chip 
Threads per core 
Frequency 

Number of chips populated Number of chips 
Memory capacity Memory capacity  
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with the baseline model. The baseline model has a single fully con-
nected hidden layer with the same number of neurons as input at-
tributes. The network uses good practices such as the rectifier 
activation function for the hidden layer. No activation function is 
used for the output layer because it is a regression problem and we 
are interested in predicting numerical values directly without 
transform [19].  

a Error evaluation 

Features have been standardized before evaluation using Scikit Learn 
Standard Scalar library, which standardizes features by removing the 
mean and scaling to unit variance [20]. For the error metric, we are 
using the average mean absolute error and the average mean squared 
error for each run of the cross-validation. The results are summarized in 
the Table 4. 

2.1.5. Selected model 
The model with the least mean squared error was the Gradient 

Boosting model. The 4 key hyperparameters with the biggest impact on 
this model’s performance [16], described below, were further tuned 
using Sklearn’s GridSearch python library to reduce the mean absolute 
error.  

• N-estimators: the number of decision trees used in the ensemble.  
• Learning rate: the rate that controls the amount of contribution that 

each model has on the ensemble prediction.  
• Subsample: the percentage of a subset of the training dataset that 

each tree is fit with.  
• Max depth: the tree depth that controls how specialized each tree is 

to the training dataset: how general or overfit it might be. 

Table 5 summarizes the optimal hyperparameters for each output 
value that was used to train the final models. 

Table 6 shows the improved average Mean Absolute Error (MAE) 
scores across 10 folds for the tuned gradient boosting model. 

2.1.6. Model validation 
We have used the results from the benchmarking experiments carried 

out in our previous research [10] to validate the accuracy of the selected 
models. The predicted and actual results for idle power and power at full 
load are summarized in the Tables 7 and 8. 

Table 4 
Error evaluation for each model.  

Label Model Average Mean absolute error 
(MAE) 

Standard deviation for MAE 
scores 

Average Mean squared error 
(MSE) 

Standard deviation for MSE 
scores 

Power at idle (W) 

RF − 14.13 4.35 − 1328.88 1509.78 
GB − 15.73 4.02 − 1086.29 1029.91 
KNN − 26.89 5.33 − 3142.02 1539.24 
ANN − 18.43 4.28 − 1387.26 882.45 

Power at full load (W) 

RF − 26.45 6.17 − 3459.35 3626.79 
GB − 30.77 5.65 − 3115.88 2652.81 
KNN − 78.65 11.19 − 18350.92 7807.01 
ANN − 49.05 9.52 − 6006.14 3443.8 

Performance per watt at full load 
(ssj_ops/W) 

RF − 450.186 100.169 − 903660.45 881136.13 
GB − 529.711 92.664 − 894948.49 728622.33 
KNN − 1517.084 236.676 − 6526411.09 2295719.8 
ANN − 926.416 129.322 − 3404429.8 1217161.5  

Table 5 
Hyperparameter values for the selected model.  

Label N- 
estimators 

Learning 
rate 

Subsample Max 
depth 

Power at idle 100 0.1 0.7 7 
Power at full load 500 0.01 0.7 9 
Performance per power at 

full load 
500 0.01 0.5 9  

Table 6 
Summary of error metrics for the selected tuned model.  

Label Average 
MAE 

MAE standard 
deviation 

Power at idle (W) − 12.808 4.149 
Power at full load (W) − 24.978 6.542 
Performance per power at full load 

(ssj_ops/W) 
− 417.157 91.498  

Table 7 
Summary of actual vs predicted values for idle power.  

Model Memory details Actual idle power Predicted idle power 

DL380 G9 x2 16GB 76.2 66.9 
DL380 G9 x4 16GB 73.7 58.5 
DL380 G9 x6 16GB 74.4 59 
DL380 G9 x8 16GB 75.1 82.3 
DL380 G9 x12 16GB 76.1 83.4 
Mean Absolute Error (MAE) 10.89 
Root Mean Squared Error (RMSE) 3.25 
Mean Absolute Percentage Error 

(MAPE) 
15 %  

Table 8 
Summary of actual vs predicted values for full power.  

Model Memory details Actual full power Predicted full power 

DL380 G9 x2 16GB 333.8 261.6 
DL380 G9 x4 16GB 369.2 300.1 
DL380 G9 x6 16GB 377.2 389 
DL380 G9 x8 16GB 391.2 362.5 
DL380 G9 x12 16GB 401.1 418.7 
Mean Absolute Error (MAE) 39.8 
Root Mean Squared Error (RMSE) 5.96 
Mean Absolute Percentage Error 

(MAPE) 
11 %  

Table 9 
Summary of actual vs calculated power at 25 % load.  

Model Memory details Actual avg. power Calculated avg. power 

DL380 G9 x2 16GB 118.1 115.6 
DL380 G9 x4 16GB 127.4 118.6 
DL380 G9 x6 16GB 132.5 141.5 
DL380 G9 x8 16GB 137.8 152.4 
DL380 G9 x12 16GB 144.4 167.2 
Mean Absolute Error (MAE) 11.56 
Root Mean Squared Error (RMSE) 3.23 
Mean Absolute Percentage Error 

(MAPE) 
8 %  
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To calculate the %error of the average power consumption, the 
average power was calculated at 25 % load level using the predicted 
values for the idle power and full power as described in the subsequent 
Section (2.2.1) and compared to the reported average server power at 25 
% load from the benchmarking reports. Results are summarized in 
Table 9. 

Considering that the experiments for the DL380 G9 configurations 
above were carried out in a different environment and settings than the 
ones published in the dataset, an 8 % error for the average power is 
sensible and as such we can consider our models to be valid. 

2.2. Energy, cost, and CO2 calculations 

In this section, we explain how we calculated the data center energy 
consumption, server workload, cost, and Carbon footprint from the 
predicted server power and performance values. 

2.2.1. Energy and workload 
The data center’s energy is divided into energy consumed by its IT 

equipment (servers, networking, and storage) and energy consumed by 
everything else, mainly its mechanical and electrical infrastructure 
(cooling, UPS heat loss, transformers heat loss, lighting, etc.). In the 
following subsections, we explain how the total data center energy is 
estimated, as well as how the total server workload is calculated.  

a Server energy 

The first step to calculate the total energy consumption of a data 
center site is to calculate the annual server energy consumption for each 
server, using the predicted idle power and power at full load values for 
that server. The total energy consumption is then calculated by adding 
together the energy of each server in the data center. 

The server’s annual energy consumption (Es) is calculated according 
to this equation [21]: 

Es = [(Pi∗β) + (Pf∗α) ]∗Rs∗ 8.76  

Where Pi is the idle power (W), Pf is the power at full load (W), a is the 
server’s utilization rate and β is calculated as 1-α, and Rs is the pro-
portion of time the servers are powered on. To convert watt to kWh per 
year, the value is multiplied by 8.76 (365*24/1000).  

b IT energy 

IT energy is calculated by adding the energy consumed by servers, 
networking devices, and storage devices. Interact currently does not 
require a list of the networking and storage devices present in a data 
center. Instead, the tool focuses on estimating the server’s energy and 
calculating other IT equipment as a percentage of that energy whilst 
factoring in the proportion of these other devices in the data center. 
Therefore, the IT energy is calculated according to the equation below: 

Eit = Es/τ  

Where Es is the total server energy and τ is the proportion server energy 
is of the IT energy, and is calculated as 1 – Rs – Rn, where Rs is the 
proportion of IT energy for storage devices and Rn is the proportion of IT 
energy for networking devices. The default value is set so that servers 
attribute to 70 % of the IT energy and networking and storage attribute 
to the remaining 30 %. The user has the option to set these 2 parameters 
when configuring their data center, depending on the degree to which 
their site relies on storage and/or networking.  

c Mechanical and electrical energy 

If the total energy consumption of the data center is known, the 
mechanical and electrical energy is simply calculated by subtracting the 

IT energy from the total energy. If the total energy is unknown, the 
mechanical and electrical energy is calculated by adding the electrical 
energy with the mechanical energy. Since UPS efficiency has the biggest 
impact on electrical energy, the electrical energy is estimated based on 
how much energy is lost due to UPS inefficiencies, and is calculated 
according to the equation below: 

Ee = Eit∗( 1 − UPS efficiency)

Electrical energy lost due to transformers is currently not being 
accounted. Energy consumed by lighting is ignored as it is often very 
low. 

The mechanical energy is estimated based on the energy consumed 
by air conditioning units, and is calculated according to the equation 
below: 

Em = η∗Pn ∗ μ ∗Ra ∗ 2.5  

Where η is the number of air conditioning units, Pn is the average BTU 
rating of an air conditioning unit, μ is the air conditioning utilization 
rate, Ra is the proportion of the time air conditioners are powered on, 
and 2.5 is used to convert BTU to kWh.  

d Total energy 

If unknown, the total energy of the site is calculated by adding the 
mechanical and electrical (M&E) energy and the IT energy.  

e Server workload 

The predicted performance per power at full load is a very important 
energy efficiency metric for servers. It is also used to calculate the server 
workload (Ws) according to the equation below. 

Ws = PPW∗Pf∗α∗Rs  

Where PPW is the performance per watt at full load (ssj_ops/watt), Pf is 
the power at full load (watt), α is the servers utilization rate, and Rs is 
the proportion of time the servers are powered on. The overall site’s 
workload is calculated by summing up the workload for all servers. 

2.2.2. Cost calculations 
Total cost is calculated according to the equation below: 

Ct = Ce + Cp + Cm + Cs  

Where Ce is the annual electricity cost and is calculated by multiplying 
the total annual energy by the electricity cost per kWh. The electricity 
cost per kWh is determined based on the location and the energy sup-
plier of the site and can be edited by the user. Cp is the procurement cost 
for servers and is calculated by adding the prices of the servers present in 
a site. Cm is the average annual maintenance cost per server and is set by 
the user. Maintenance cost includes server parts repairs and upgrades, 
licensing, and IT labor cost. Finally, Cs is the annual space/rack cost and 
is calculated by multiplying the number of racks by the annual cost per 
rack. The annual cost per rack is specified by the user and excludes 
electricity cost. 

2.2.3. CO2 calculations 
The total estimated carbon footprint is calculated by adding scope 2 

and scope 3 carbon emissions. Annual scope 2 CO2 emissions are 
calculated by multiplying the annual total energy by the CO2 per kWh 
value for the site. CO2 per kWh is determined based on the site’s location 
[22] and can be adjusted by the user. Scope 3 CO2 emissions are 
calculated by multiplying the number of servers by 922 CO2e in Kg [23] 
Refurbished server models will not include the scope 3 emissions in the 
total carbon footprint calculation. 
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3. Interact features 

Interact provides unique capabilities that help data center operators 
analyze their current infrastructure’s energy, carbon footprint, and cost, 
as well as provide the user with tailored server refresh recommendations 
to improve their energy and cost efficiency. 

3.1. Analysis of existing infrastructure’s energy, CO2 footprint and cost 

Interact helps data centers estimate their energy consumption and 
associated carbon emissions. The tool also calculates the associated 
Power Usage Effectiveness (PUE) and Carbon Usage Effectiveness (CUE) 
of the site as shown in Fig. 1. 

Another pertinent feature provided by Interact is allowing users to 
view the cost projections of their data center and enabling them to 
manipulate some parameters to see the direct effect of these parameters 
on cost. Fig. 2 shows some of the cost projections for a site according to 
its existing servers and specified parameters. 

3.2. Assessing servers 

Interact allow users to compare the energy consumption and per-
formance between several servers from different vendors. The tool 
currently includes more than 400 stored server specs and over 1400 CPU 
specifications, to allow the user to easily find, select and evaluate a 

model of their choice. 
The tool also identifies the data center’s 10 % least efficient servers, 

responsible for consuming higher watts per operation and are worth 
upgrading to improve the site’s overall energy efficiency. 

3.3. Vendor-neutral server recommendations to improve energy efficiency 
and reduce costs 

Of most widespread appeal to industry is Interact’s ability to provide 
data centers with server refresh recommendations to reduce their total 
energy and/or cost. A list of over 240 preconfigured server models is 
evaluated (the list includes several vendors, with new and refurbished 
conditions), and the best model is identified for the user. The list is 
regularly updated to include more configurations and models. 

Fig. 3 shows an example of a recommended server model scenario for 
improving the data center’s overall energy efficiency and reducing the 
carbon footprint. In this scenario, the recommended server model for 
energy also reduces the overall cost over the assessment period, but it is 
not always the case. 

We can observe for this particular example, that while the procure-
ment cost to upgrade the servers is very high (£ 86,827), the cost saved 
from operating the new servers (electricity cost) as well as maintenance 
and space (by having the number of servers needed to execute the same 
workload cut by 80 %) is significant. Upgrading to new servers in this 
case justifies the procurement cost over time. This is an expected result, 

Fig. 1. Energy & CO2 calculator page.  

Fig. 2. Interact’s recommended refresh scenario to reduce energy.  
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as explained in detail in our previous study [10]. Fig. 4 below is another 
example that shows the best server model for reducing cost. 

The user also has the option to choose to assess the server refresh 
scenario in terms of cost, energy, and Carbon footprint using any model 
of their choice. It is worth mentioning here that some server models, 
despite their high compute capacity per watt and efficiency, often come 
at a too high purchase price to justify operational cost savings. It is often 
the case that refurbished servers guarantee the highest energy and cost 
savings in most of the scenarios. 

4. Use cases 

This section highlights three common data center use cases, and how 
Interact can be utilized to support data centers in each case. 

4.1. Lift and shift 

“Lift and shift,” also known as “rehosting,” is the process of migrating 
an exact copy of an application or workload (and its data store and OS) 
from one IT environment to another—usually from on-premises to 
public or private cloud [24]. For data center operators, this is likely to be 
one of two options:  

• Lift and shift of existing infrastructure between sites.  
• Lift and shift of client applications from their existing infrastructure 

to their managed data center. 

In the case of shifting between two sites, the ability to optimize the IT 
required to move the applications and virtual machines is performance- 
based rather than necessarily physical requirement-led. This is the same 

as if the customer was moving to a public cloud. The physical hardware 
may become irrelevant but the workload matters. 

The main reason for the move is often cost and performance/ 
resiliency-related. In many cases moving to the public cloud will 
involve the same risks as moving to a new physical location if consoli-
dation and performance benefits are being realized. In standard lift and 
shift moves the kit is moved “as-is” to limit negative impact on complex 
or legacy workloads. 

The benefit of physical moves is that costs are more readily in con-
trol, we see a lot of this in hybrid environment moves. Some element of 
the infrastructure is moved to the cloud (items that are cloud-ready such 
as Virtualized workloads, containerized apps, and microservices) while 
other parts are kept on-premise or co-located. 

Sizing for a co-location move where you want to gain energy effi-
ciencies, performance benefits or size consolidation is difficult. How-
ever, the ability to measure current infrastructure against vendor- 
neutral suggestions is now possible using the Interact tool. 

Lift and shift is often necessary when there are compliance reasons to 
keep physical infrastructure or where applications are being moved to 
end of life so re-architecting for the cloud makes little sense. There can 
also be API restrictions or latency issues for IoT or AI data. All these 
require local hardware provision but future planning around the infra-
structure is highly beneficial. 

4.2. Rack level consolidation 

Needing extra capacity is a common problem for many operators. 
Finding the best answers to provide space and estate reductions with 
hardware provision is important. Increasing rack density is particularly 
important for edge-based deployments where space is at a premium, or 

Fig. 3. Cost forecast page.  
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to make the best use of liquid cooling solutions. 
In every case we have seen there has been an ability to increase rack 

density in current data estates. Either through consolidating less per-
forming servers into higher capacity servers, or through correctly sizing 
the current need to account for future scalability. In many cases, we have 
been able to reduce the estate’s physical footprint by up to 82 %. In a few 
rare cases even over 90 %. This allows providers to reduce the physical 
footprint of their infrastructure and use the same amount of space to 
facilitate serving more customers with the same fixed facility costs. 

Sometimes additional servers or higher performance servers are 
required but at other times upgrades can be easier because you do not 
need to migrate workloads to a new machine. Correct sizing and 
configuration can increase the performance on a rack level and allow 
redundant servers to be turned off or decommissioned. 

By running the data through the interact tool, we were able to run 
analysis alternatives, which gave the following information as a singular 
but not uncommon example.  

• £534 for a component upgrade resulted in 18 % increase in total 
performance  

• £4729 for a new server resulted in 25 % increase in total performance  
• 3% increase in running costs for new RAM vs 25 % increase in 

running costs for a new server 

This is one option for consolidation. Another is component level 
changes of existing hardware to expand capacity or available 
performance. 

Rack level consolidation is also relatively straightforward to 

calculate by inputting the servers to analyze per rack and then getting 
smart recommendations to drive efficiency. For example, identifying the 
10 % worst servers in terms of energy efficiency and performance and 
then working to reduce the number of servers required to generate the 
same workload and decrease the number of racks required. 

We have seen this be particularly effective when a multisite business 
aims to reduce their physical footprint from 3 data centers to 2 and then 
have the cloud as their third option. Thereby reducing their physical 
costs but still working to the same levels of resilience and performance. 

4.3. Five-year strategy 

A large managed service provider in Northern England recently 
carried out a snapshot report on the energy efficiency of their server 
estate. The initial report gave some interesting data on energy and space 
savings opportunities [25] within the data center as an indication of the 
size and scope of possible cost savings, through operational and energy 
costs with associated carbon reductions. It suggested the overall server 
estate could be reduced by up to 86 %, with a near 4.7 M kWh energy 
reduction over five years and a £650,000 return. 

We all know that replacing an entire server estate in this way is 
unrealistic. So, the next phase was to highlight immediate changes with 
high impact results, which would form part of a wider 5-year refresh 
strategy. We used the Interact tool to zero in on the 10 % worst per-
forming servers within the data center to identify action points and 
calculate the immediate and long-term benefits to the organization. The 
tool identified 85 servers, manufactured between 2003–2014, which 
were performing poorly on energy use, with a combined energy 

Fig. 4. Interact’s recommended refresh scenario to reduce cost.  
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consumption of around 250 kW h per year. 
The results were startling. Interact was also able to demonstrate a 77 

% reduction in energy consumption and associated carbon emissions by 
switching over from the current infrastructure. This translated to 
809,823 kW h of energy and 240,315 kg CO2e. The 809,823 kW h is 
roughly enough energy to power 219 UK homes for a year [26]. 

More interesting was the cost savings the suggested changeover 
represented. Over five years, the suggested solution was 70 % cheaper 
than continuing with the current infrastructure. Reduced energy costs, 
M&E energy costs, maintenance, and rack savings represented over 
£180,000, and that was even factoring in the cost of the replacement 
machines. There was an additional financial benefit on the 83 % 
reduction in the number of servers. Current growth levels were sug-
gesting the organization might have to acquire more building space. 
This report demonstrated they may not have to. 

Interact demonstrated that every month the data center chose not to 
replace the inefficient servers, it was losing money. Comparing the 
monthly savings from the existing servers to the replacement models, 
transferring to the suggested option would pay back the cost of pro-
curement within four months. 

The data center was also wasting energy and carbon for every month 
that it continued using the existing, less energy-efficient servers. Energy 
loss was around 14,849 kW h (enough to power 4 average UK homes for 
a year). Excess carbon emissions were around 3800 kg. Better yet, the 
suggested solution was a refurbished model, meaning that there was 
minimum supply chain carbon in replacing the infrastructure. Estimated 
embodied carbon savings, as a result, were 11,986 kg CO2e. 

Whilst the figures presented here are particular to the customer’s 
facility, they do highlight an important issue. When executing a 5-year 
refresh program, it is important to carry out research into which ma-
chines are performing worst, what solutions are available on replace-
ment, and what the exact cost and energy projections on this are. Too 
often, capacity planners operate a like-for-like transfer or – potentially 
worse – over-provision with IT hardware that is unsuitable for the 
workload. Understanding the server estate, measuring performance, and 
comparing against a full vendor-agnostic database of makes and models 
is essential for the bottom line and to reduce environmental impact. 

5. Limitations and future work 

The SPEC power benchmark measures server performance in terms 
of server-side java operations per second (ssj_ops), limiting the scope of 

results to servers performing transactional workload similar to SPEC’s 
SSJ worklet. 

Moreover, though published results have been reviewed by the SPEC 
organization prior to publication, SPEC makes no warranties about the 
accuracy or veracity of this data [27]. With the lack of third-party au-
ditors to validate the published results, the SPEC power dataset, and 
consequently the estimated figures generated by Interact, should not be 
used for energy, carbon or financial reporting. Rather, these scores need 
to be used only as indicators for the purpose of improving energy 
efficiency. 

Also, the available dataset contains more records for servers for 
certain hardware vendors (ex. HPE, Dell, Fujitsu) than others (ex. Cisco), 
and certain server types (ex. rack servers) than others (ex. blades), 
resulting in possible higher accuracy for certain models. 

A possible extension of the current model is to include software/ 
configuration features (such as Operating System and BIOS power pro-
files) and environmental factors (such as operating temperature and 
pressure) to study the effect these parameters have on power usage and 
performance. For now, the scope of the presented model is limited to the 
default BIOS profile which is set to energy efficiency (performance per 
watt) to most servers. 

Another potential development is to report on the materials 
consumed when opting for a server refresh. This is a crucial point to 
consider in sustainability reports since servers and server components 
are costly in terms of both carbon and Critical Raw Materials (identified 
by the EU as in low or politically unstable supply). 

Servers are made up of steel, aluminum and plastic, which all have a 
high environmental cost to produce with raw materials according to the 
JRC [23]. The same report also states that it is not possible to recover 
100 % of these materials with current recycling technologies. 

Steel and aluminum are two of the top five most energy intensive 
manufacturing processes according to the IPCC [28]. Plastic is a 
by-product of the petrochemical industry, responsible for 3.6 % of global 
greenhouse gas emissions according to Our World in Data [29]. 

In addition to this, many of the materials within servers have other 
environmental costs. For example, Aluminum production produces a 
mixture of metal- and silicon-rich oxides known as “red mud”, which is 
highly caustic and is impossible to break down with current technolo-
gies. The build-up of red mud has been identified as a significant risk in 
aluminum producing areas [30]. 

In addition, the supply chain is cross continental during production 
and at end of life, meaning that there is a large amount of international 

Fig. 5. The global value chain for the electronics industry [23].  
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shipment involved with obvious implications on transport related 
emissions [23] as seen in Fig. 5. 

Quantifying the material cost and energy cost involved inthe 
manufacturing and transport of new server and component, and cross 
referencing this against the energy and materials saved by using refur-
bished components and remanufactured machines would be useful in 
measuring positive environmental impact outside of use phase energy 
savings. 
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